Acyclic Coloring of Graphs
نویسندگان
چکیده
A vertex coloring of a graph G is called acyclic if no two adjacent vertices have the same color and there is no two-colored cycle in G. The acyclic chromatic number of G , denoted by A ( G ) , is the least number of colors in an acyclic coloring of G. We show that if G has maximum degree d, then A ( G ) = O(d413) as d+m. This settles a problem of Erdos who conjectured, in 1976, that A ( G ) = o(d2) as d-m. We also show that there are graphs G with maximum degree d for which A ( G ) = R(d413/(log d ) l ” ) ; and that the edges of any graph with maximum degree d can be colored by O(d) colors so that no two adjacent edges have the same color and there is no two-colored cycle. All the proofs rely heavily on probabilistic arguments.
منابع مشابه
A new approach to compute acyclic chromatic index of certain chemical structures
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
متن کاملOn the Acyclic Chromatic Number of Hamming Graphs
An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of Hamming graphs, products of complete graphs, are considered.
متن کاملAcyclic Edge-coloring of Sierpinski-like Graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by χ′a(G). Sierpinski graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpinski gasket graphs Sn are the graphs naturally defined ...
متن کاملOn Acyclic Vertex Coloring of Grid like graphs
d-dimensional partial tori are graphs that can be expressed as cartesian product of d graphs each of which is an induced path or cycle. Some well known graphs like d-dimensional hypercubes, meshes and tori are examples belong to this class. Muthu et al.[MNS06] have studied the problem of acyclic edge coloring for such graphs. We try to explore the acyclic vertex coloring problem for these graph...
متن کاملAcyclic Vertex Coloring of Graphs of Maximum Degree
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F), is defined as the maximum a(G) over all the graphs G ∈ F . In this pape...
متن کاملAcyclic vertex coloring of graphs of maximum degree 5
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of a graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F ), is defined as the maximum a(G) over all the graphs G ∈ F . In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 2 شماره
صفحات -
تاریخ انتشار 1991